Towards Smooth Video CompositionDownload PDF

Published: 01 Feb 2023, Last Modified: 17 Sept 2023ICLR 2023 posterReaders: Everyone
Keywords: video generation, generative adversarial network
TL;DR: We develop a simple yet strong baseline for smooth video generation.
Abstract: Video generation, with the purpose of producing a sequence of frames, requires synthesizing consistent and persistent dynamic contents over time. This work investigates how to model the temporal relations for composing a video with arbitrary number of frames, from a few to even infinite, using generative adversarial networks (GANs). First, towards composing adjacent frames, we show that the alias-free operation for single image generation, together with adequately pre-learned knowledge, bring a smooth frame transition without harming the per-frame quality. Second, through incorporating a temporal shift module (TSM), which is originally designed for video understanding, into the discriminator, we manage to advance the generator in synthesizing more reasonable dynamics. Third, we develop a novel B-Spline based motion representation to ensure the temporal smoothness, and hence achieve infinite-length video generation, going beyond the frame number used in training. We evaluate our approach on a range of datasets and show substantial improvements over baselines on video generation. Code and models are publicly available at \url{}.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Generative models
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](
12 Replies