Algorithms and Hardness for Linear Algebra on Geometric GraphsDownload PDFOpen Website

Published: 01 Jan 2020, Last Modified: 04 May 2023FOCS 2020Readers: Everyone
Abstract: For a function <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\mathrm{K}:\mathbb{R}^{d}\times \mathbb{R}^{d}\rightarrow \mathbb{R}_{\geq 0}$</tex> , and a set <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$P=\{x_{1},\ldots, x_{n}\}\subset \mathbb{R}^{d}$</tex> of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$n$</tex> points, the K graph <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$G_{P}$</tex> of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$P$</tex> is the complete graph on <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$n$</tex> nodes where the weight between nodes <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$i$</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$j$</tex> is given by <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\mathrm{K}(x_{i}, x_{j})$</tex> . In this paper, we initiate the study of when efficient spectral graph theory is possible on these graphs. We investigate whether or not it is possible to solve the following problems in <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$n^{1+o(1)}$</tex> time for a K-graph <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$G_{P}$</tex> when <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$d &lt; n^{o(1)}$</tex> : •Multiply a given vector by the adjacency matrix or Laplacian matrix of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$G_{P}$</tex> •Find a spectral sparsifier of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$G_{P}$</tex> •Solve a Laplacian system in <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$G_{P}$</tex> 's Laplacian matrix For each of these problems, we consider all functions of the form <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\mathrm{K}(u, v)=f(\Vert u-v\Vert_{2}^{2})$</tex> for a function <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$f:\mathbb{R}\rightarrow \mathbb{R}$</tex> . We provide algorithms and comparable hardness results for many such K, including the Gaussian kernel, Neural tangent kernels, and more. For example, in dimension <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$d=\Omega(\log n)$</tex> , we show that there is a parameter associated with the function <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$f$</tex> for which low parameter values imply <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$n^{1+o(1)}$</tex> time algorithms for all three of these problems and high parameter values imply the nonexistence of subquadratic time algorithms assuming Strong Exponential Time Hypothesis (SETH), given natural assumptions on <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$f$</tex> . As part of our results, we also show that the exponential dependence on the dimension <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$d$</tex> in the celebrated fast multi-pole method of Greengard and Rokhlin cannot be improved, assuming SETH, for a broad class of functions <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$f$</tex> . To the best of our knowledge, this is the first formal limitation proven about fast multipole methods.
0 Replies

Loading