TextEdge: Multi-oriented Scene Text Detection via Region Segmentation and Edge ClassificationDownload PDFOpen Website

2019 (modified: 08 Nov 2022)ICDAR 2019Readers: Everyone
Abstract: The semantic-segmentation-based scene text detection algorithms always use the bounding-box regions or their shrinks to represent the text pixels. However, the non-text pixel information in these regions easily results in the poor performance of text detection, because these semantic segmentation methods need accurate pixel-level annotated training data to achieve approving performance and they are sensitive to noise and interference. In this work, we propose a fully convolutional network (FCN) based method termed TextEdge for multi-oriented scene text detection. Compared with previous methods simply using bounding-box regions as a segmentation mask, TextEdge introduces the text-region edge map as a new segmentation mask. Edge information is more representative for text areas and is proved to be effective in improving detection performance. TextEdge is optimized in an end-to-end way with multi-task outputs: text and non-text classification, text-edge prediction and the text boundaries regression. Experiments on standard datasets demonstrate that the proposed method achieves state-of-the-art performance in both accuracy and efficiency. Specifically, it achieves an F-score of 0.88 on ICDAR 2013 dataset and 0.86 on ICDAR 2015 dataset.
0 Replies

Loading