Rethinking Aleatoric and Epistemic Uncertainty

Published: 10 Oct 2024, Last Modified: 07 Dec 2024NeurIPS BDU Workshop 2024 OralEveryoneRevisionsBibTeXCC BY 4.0
Keywords: machine learning, uncertainty estimation
Abstract: The ideas of aleatoric and epistemic uncertainty are widely used to reason about the probabilistic predictions of machine-learning models. We identify incoherence in existing discussions of these ideas and suggest this stems from the aleatoric-epistemic view being insufficiently expressive to capture all of the distinct quantities that researchers are interested in. To explain and address this we derive a simple delineation of different model-based uncertainties and the data-generating processes associated with training and evaluation. Using this in place of the aleatoric-epistemic view could produce clearer discourse as the field moves forward.
Submission Number: 77
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview