NineRec: A Benchmark Dataset Suite for Evaluating Transferable Recommendation

Published: 2025, Last Modified: 16 Jan 2026IEEE Trans. Pattern Anal. Mach. Intell. 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Large foundational models, through upstream pre-training and downstream fine-tuning, have achieved immense success in the broad AI community due to improved model performance and significant reductions in repetitive engineering. By contrast, the transferable one-for-all models in the recommender system field, referred to as TransRec, have made limited progress. The development of TransRec has encountered multiple challenges, among which the lack of large-scale, high-quality transfer learning recommendation dataset and benchmark suites is one of the biggest obstacles. To this end, we introduce NineRec, a TransRec dataset suite that comprises a large-scale source domain recommendation dataset and nine diverse target domain recommendation datasets. Each item in NineRec is accompanied by a descriptive text and a high-resolution cover image. Leveraging NineRec, we enable the implementation of TransRec models by learning from raw multimodal features instead of relying solely on pre-extracted off-the-shelf features. Finally, we present robust TransRec benchmark results with several classical network architectures, providing valuable insights into the field.
Loading