Re-Evaluating the Impact of Unseen-Class Unlabeled Data on Semi-Supervised Learning Model

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Safe Semi-Supervised Learning, Unseen-Class Unlabeled Data
TL;DR: Re-Evaluating the Impact of Unseen-Class Unlabeled Data on Semi-Supervised Learning Model
Abstract: Semi-supervised learning (SSL) effectively leverages unlabeled data and has been proven successful across various fields. Current safe SSL methods believe that unseen classes in unlabeled data harm the performance of SSL models. However, previous methods for assessing the impact of unseen classes on SSL model performance are flawed. They fix the size of the unlabeled dataset and adjust the proportion of unseen classes within the unlabeled data to assess the impact. This process contravenes the principle of controlling variables. Adjusting the proportion of unseen classes in unlabeled data alters the proportion of seen classes, meaning the decreased classification performance of seen classes may not be due to an increase in unseen class samples in the unlabeled data, but rather a decrease in seen class samples. Thus, the prior flawed assessment standard that "unseen classes in unlabeled data can damage SSL model performance" may not always hold true. This paper strictly adheres to the principle of controlling variables, maintaining the proportion of seen classes in unlabeled data while only changing the unseen classes across five critical dimensions, to investigate their impact on SSL models from global robustness and local robustness. Experiments demonstrate that unseen classes in unlabeled data do not necessarily impair the performance of SSL models; in fact, under certain conditions, unseen classes may even enhance them.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2001
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview