Foreground and Text-lines Aware Document Image Rectification

Published: 01 Jan 2023, Last Modified: 08 Aug 2024ICCV 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: This paper aims at the distorted document image rectification problem, the objective to eliminate the geometric distortion in the document images and realize document intelligence. Improving the readability of distorted documents is crucial to effectively extract information from deformed images. According to our observations, the foreground and text-line of the original warped image can represent the deformation tendency. However, previous distorted image rectification methods pay little attention to the readability of the warped paper. In this paper, we focus on the foreground and text-line regions of distorted paper and proposes a global and local fusion method to improve the rectification effect of distorted images and enhance the readability of document images. We introduce cross attention to capture the features of the foreground and text-lines in the warped document and effectively fuse them. The proposed method is evaluated quantitatively and qualitatively on the public DocUNet benchmark and DIR300 Dataset, which achieve state-of-the-art performances. Experimental analysis shows the proposed method can well perform overall geometric rectification of distorted images and effectively improve document readability (using the metrics of Character Error Rate and Edit Distance). The code is available at https://github.com/xiaomore/Document-Image-Dewarping.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview