DreamMakeup: Face Makeup Customization using Latent Diffusion Models

27 Sept 2024 (modified: 15 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Diffusion model, Makeup customization, Image editing
TL;DR: DreamMakup is a novel face makeup customization framework based on diffusion model without any fine-tuning
Abstract: The exponential growth of the global makeup market has paralleled advancements in virtual makeup simulation technology. Despite the progress led by GANs, their application still encounters significant challenges, including training instability and limited customization capabilities. Addressing these challenges, this paper introduces DreamMakup: a novel Diffusion model based Makeup Customization, leveraging the inherent advantages of diffusion models for superior controllability and precise real-image editing. DreamMakeup employs early-stopped DDIM inversion to preserve the facial structure and identity while enabling extensive customization through various conditioning inputs such as reference images, specific RGB colors, and textual descriptions. Our model demonstrates notable improvements over existing GAN-based frameworks, improved customization, color-matching capabilities, and compatibility with textual descriptions or LLMs with affordable computational costs. Project page is available at https://dreammakeup.github.io/
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9085
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview