Bag-of-steps: Predicting lower-limb fracture rehabilitation length by weight loading analysis

Albert Pla, Natalia Mordvanyuk, Beatriz López, Marco Raaben, Taco J. Blokhuis, Herman R. Holstlag

Published: 01 Dec 2017, Last Modified: 07 Nov 2025NeurocomputingEveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Lower-limb fracture surgery is one of the major causes for autonomy loss among aged people. For care institutions, tackling with an optimized rehabilitation process is a key factor as it improves both the patients quality of life and the associated costs of the after surgery process.This paper presents bag-of-steps, a new methodology to predict the rehabilitation length and discharge date of a patient using insole force sensors and a predictive model based on the bag-of-words technique. The sensors information is used to characterize the patients gait creating a set of step descriptors. This descriptors are later used to define a vocabulary of steps using a clustering method. The vocabulary is used to describe rehabilitation sessions which are finally entered to a classifier that performs the final rehabilitation estimation. The methodology has been tested using real data from patients that underwent surgery after a lower-limb fracture.
Loading