Keywords: machine learning, deep learning, computer vision, activation normalization, batch normalization
Abstract: Batch Normalization (BN), a widely-used technique in neural networks, enhances generalization and expedites training by normalizing each mini-batch to the same mean and variance. However, its effectiveness diminishes when confronted with diverse data distributions.
To address this challenge, we propose Supervised Batch Normalization (SBN), a pioneering approach. We expand normalization beyond traditional single mean and variance parameters, enabling the identification of data modes prior to training. This ensures effective normalization for samples sharing common features. We define contexts as modes, categorizing data with similar characteristics. These contexts are explicitly defined, such as domains in domain adaptation or modalities in multimodal systems, or implicitly defined through clustering algorithms based on data similarity. We illustrate the superiority of our approach over BN and other commonly employed normalization techniques through various experiments on both single and multi-task datasets. Integrating SBN with Vision Transformer results in a remarkable 15.13% accuracy enhancement on CIFAR-100. Additionally, in domain adaptation scenarios, employing AdaMatch demonstrates an impressive 22.25% accuracy improvement on MNIST and SVHN compared to BN.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6145
Loading