Robust Learning Meets Generative Models: Can Proxy Distributions Improve Adversarial Robustness?Download PDF

Published: 28 Jan 2022, Last Modified: 13 Feb 2023ICLR 2022 PosterReaders: Everyone
Keywords: adversarial robustness, certified adversarial robustness, adversarial attacks, generative models, proxy distribution
Abstract: While additional training data improves the robustness of deep neural networks against adversarial examples, it presents the challenge of curating a large number of specific real-world samples. We circumvent this challenge by using additional data from proxy distributions learned by advanced generative models. We first seek to formally understand the transfer of robustness from classifiers trained on proxy distributions to the real data distribution. We prove that the difference between the robustness of a classifier on the two distributions is upper bounded by the conditional Wasserstein distance between them. Next we use proxy distributions to significantly improve the performance of adversarial training on five different datasets. For example, we improve robust accuracy by up to $7.5$% and $6.7$% in $\ell_{\infty}$ and $\ell_2$ threat model over baselines that are not using proxy distributions on the CIFAR-10 dataset. We also improve certified robust accuracy by $7.6$% on the CIFAR-10 dataset. We further demonstrate that different generative models brings a disparate improvement in the performance in robust training. We propose a robust discrimination approach to characterize the impact and further provide a deeper understanding of why diffusion-based generative models are a better choice for proxy distribution than generative adversarial networks.
One-sentence Summary: We leverage proxy distributions to significantly improve the robustness of deep neural network.
Supplementary Material: zip
19 Replies