Tensor Train Decomposition for Adversarial Attacks on Computer Vision Models

ICLR 2025 Conference Submission13683 Authors

28 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: tensor train, optimization, attribution, adversarial attack, computer vision, black box
Abstract: Deep neural networks (DNNs) are widely used today, but they are vulnerable to adversarial attacks. To develop effective methods of defense, it is important to understand the potential weak spots of DNNs. Often attacks are organized taking into account the architecture of models (white-box approach) and based on gradient methods, but for real-world DNNs this approach in most cases is impossible. At the same time, several gradient-free optimization algorithms are used to attack black-box models. However, classical methods are often ineffective in the multidimensional case. To organize black-box attacks for computer vision models, in this work, we propose the use of an optimizer based on the low-rank tensor train (TT) format, which has gained popularity in various practical multidimensional applications in recent years. Combined with the attribution of the target image, which is built by the auxiliary (white-box) model, the TT-based optimization method makes it possible to organize an effective black-box attack by small perturbation of pixels in the target image. The superiority of the proposed approach over three popular baselines is demonstrated for seven modern DNNs on the ImageNet dataset.
Supplementary Material: zip
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13683
Loading