Fair Off-Policy Learning from Observational Data

21 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: causal reasoning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Causal machine learning, off-policy learning, fairness
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a novel framework for fair off-policy learning from observational data.
Abstract: Algorithmic decision-making in practice must be fair for legal, ethical, and societal reasons. To achieve this, prior research has contributed various approaches that ensure fairness in machine learning predictions, while comparatively little effort has focused on fairness in decision-making, specifically off-policy learning. In this paper, we propose a novel framework for fair off-policy learning: we learn decision rules from observational data under different notions of fairness, where we explicitly assume that observational data were collected under a different -- potentially discriminatory -- behavioral policy. For this, we first formalize different fairness notions for off-policy learning. We then propose a neural network-based framework to learn optimal policies under different fairness notions. We further provide theoretical guarantees in the form of generalization bounds for the finite-sample version of our framework. We demonstrate the effectiveness of our framework through extensive numerical experiments using both simulated and real-world data. Altogether, our work enables algorithmic decision-making in a wide array of practical applications where fairness must be ensured.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3465
Loading