The DipEncoder: Enforcing Multimodality in AutoencodersDownload PDFOpen Website

2022 (modified: 19 Jan 2023)KDD 2022Readers: Everyone
Abstract: Hartigan's Dip-test of unimodality gained increasing interest in unsupervised learning over the past few years. It is free from complex parameterization and does not require a distribution assumed a priori. A useful property is that the resulting Dip-values can be derived to find a projection axis that identifies multimodal structures in the data set. In this paper, we show how to apply the gradient not only with respect to the projection axis but also with respect to the data to improve the cluster structure. By tightly coupling the Dip-test with an autoencoder, we obtain an embedding that clearly separates all clusters in the data set. This method, called DipEncoder, is the basis of a novel deep clustering algorithm. Extensive experiments show that the DipEncoder is highly competitive to state-of-the-art methods.
0 Replies

Loading