Model Zoo: A Growing Brain That Learns ContinuallyDownload PDF

29 Sept 2021, 00:32 (edited 14 Mar 2022)ICLR 2022 PosterReaders: Everyone
  • Keywords: Continual Learning, Learning Theory
  • Abstract: This paper argues that continual learning methods can benefit by splitting the capacity of the learner across multiple models. We use statistical learning theory and experimental analysis to show how multiple tasks can interact with each other in a non-trivial fashion when a single model is trained on them. The generalization error on a particular task can improve when it is trained with synergistic tasks, but can also deteriorate when trained with competing tasks. This theory motivates our method named Model Zoo which, inspired from the boosting literature, grows an ensemble of small models, each of which is trained during one episode of continual learning. We demonstrate that Model Zoo obtains large gains in accuracy on a wide variety of continual learning benchmark problems.
  • One-sentence Summary: Continual learning methods can benefit by splitting the capacity of the learner and we leverage this in our method Model Zoo, which demonstrates large gains in accuracy on a variety of continual learning benchmarks.
  • Supplementary Material: zip
34 Replies

Loading