Abstract: Table detection and structure recognition from archival document images remain challenging due to diverse table structures, complex document layouts, degraded image qualities and inconsistent table scales. In this paper, we propose an instance segmentation based approach for archival table structure recognition which utilizes both foreground cell content and background ruling line information. To overcome the influence from inconsistent table scales, we design an adaptive image scaling method based on average cell size and density of ruling lines inside each document image. Different from previous multi-scale training and testing approaches which usually slow down the speed of the whole system, our adaptive scaling resizes each image to a single optimal size which can not only improve overall model performance but also reduce memory and computing overhead on average. Extensive experiments on cTDaR 2019 Archival dataset show that our method can outperform the baselines and achieve new state-of-the-art performance, which demonstrates the effectiveness and superiority of the proposed method.
0 Replies
Loading