Propensity-driven Uncertainty Learning for Sample Exploration in Source-Free Active Domain Adaptation

13 Sept 2024 (modified: 22 Jan 2025)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Active learning, Source-free domain adaptation
Abstract: Source-free active domain adaptation (SFADA) addresses the challenge of adapting a pre-trained model to new domains without access to source data while minimizing the need for target domain annotations. This scenario is particularly relevant in real-world applications where data privacy, storage limitations, or labeling costs are significant concerns. Key challenges in SFADA include selecting the most informative samples from the target domain for labeling, effectively leveraging both labeled and unlabeled target data, and adapting the model without relying on source domain information. Additionally, existing methods often struggle with noisy or outlier samples and may require impractical progressive labeling during training. To effectively select more informative samples without frequently requesting human annotations, we propose the Propensity-driven Uncertainty Learning (ProULearn) framework. ProULearn utilizes a novel homogeneity propensity estimation mechanism combined with correlation index calculation to evaluate feature-level relationships. This approach enables the identification of representative and challenging samples while avoiding noisy outliers. Additionally, we develop a central correlation loss to refine pseudo-labels and create compact class distributions during adaptation. In this way, ProULearn effectively bridges the domain gap and maximizes adaptation performance. The principles of informative sample selection underlying ProULearn have broad implications beyond SFADA, offering benefits across various deep learning tasks where identifying key data points or features is crucial. Extensive experiments on four benchmark datasets demonstrate that ProULearn outperforms state-of-the-art methods in domain adaptation scenarios.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 149
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview