DPFormer: Learning Differentially Private Transformer on Long-Tailed Data

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: societal considerations including fairness, safety, privacy
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Differential privacy; Transformer; Recommendation Systems
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose DPFormer to enable efficient and effective training of Transformers with DP-SGD, especially in the presence of long-tailed data.
Abstract: The Transformer has emerged as a versatile and effective architecture with broad applications. However, it still remains an open problem how to efficiently train a Transformer model of high utility with differential privacy guarantees. In this paper, we identify two key challenges in learning differentially private Transformers, i.e., heavy computation overhead due to per-sample gradient clipping and unintentional attention distraction within the attention mechanism. In response, we propose DPFormer, equipped with Phantom Clipping and Re-Attention Mechanism, to address these challenges. Our theoretical analysis shows that DPFormer can reduce computational costs during gradient clipping and effectively mitigate attention distraction (which could obstruct the training process and lead to a significant performance drop, especially in the presence of long-tailed data). Such analysis is further corroborated by empirical results on two real-world recommendation datasets with varying degrees of long-tailedness, showing its significant improvement in terms of efficiency and effectiveness.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4309
Loading