Keywords: Inverse Reinforcement Learning
TL;DR: We estimate the Bellman score in order to solve IRL, reward transfer, and counterfactual prediction problems
Abstract: We are interested in solving a class of problems that seek to understand and adopt rational behavior from demonstrations. We may broadly classify these problems into four categories of reward identification, counterfactual analysis, behavior imitation, and behavior transfer. In this work, we make a key observation that knowing how changes in the underlying rewards affect the optimal behavior allows one to solve a variety of aforementioned problems. To a local approximation, this quantity is precisely captured by what we term the Bellman score, i.e gradient of log probabilities of the optimal policy with respect to the reward. We introduce the Bellman score operator which provably converges to the gradient of the infinite-horizon optimal Q-values with respect to the reward which can then be used to directly estimate the score. Guided by our theory, we derive a practical score-learning algorithm which can be used for score estimation in high-dimensional state-actions spaces. We show that score-learning can be used to reliably identify rewards, perform counterfactual predictions, achieve state-of-the-art behavior imitation, and transfer policies across environments.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
Supplementary Material: zip
39 Replies
Loading