Research Area: Compute efficient LMs, Learning algorithms for LMs, LMs on diverse modalities and novel applications
Keywords: byte-level language model, state space model
TL;DR: A token-free selective state space model.
Abstract: Token-free language models learn directly from raw bytes and remove the inductive bias of subword tokenization. Operating on bytes, however, results in significantly longer sequences. In this setting, standard autoregressive Transformers scale poorly as the effective memory required grows with sequence length. The recent development of the Mamba state space model (SSM) offers an appealing alternative approach with a fixed-sized memory state and efficient decoding. We propose MambaByte, a token-free adaptation of the Mamba SSM trained autoregressively on byte sequences. In terms of modeling, we show MambaByte to be competitive with, and even to outperform, state-of-the-art subword Transformers on language modeling tasks while maintaining the benefits of token-free language models, such as robustness to noise. In terms of efficiency, we develop an adaptation of speculative decoding with tokenized drafting and byte-level verification. This results in a $2.6\times$ inference speedup to the standard MambaByte implementation, showing similar decoding efficiency as the subword Mamba. These findings establish the viability of SSMs in enabling token-free language modeling.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the COLM Code of Ethics on https://colmweb.org/CoE.html
Author Guide: I certify that this submission complies with the submission instructions as described on https://colmweb.org/AuthorGuide.html
Submission Number: 572
Loading