Learning Hierarchical Models of Complex Daily Activities from Annotated VideosDownload PDFOpen Website

2018 (modified: 28 Oct 2022)WACV 2018Readers: Everyone
Abstract: Effective recognition of complex long-term activities is becoming an increasingly important task in artificial intelligence. In this paper, we propose a novel approach for building models of complex long-term activities. First, we automatically learn the hierarchical structure of activities by learning about the 'parent-child' relation of activity components from a video using the variability in annotations acquired using multiple annotators. This variability allows for extracting the inherent hierarchical structure of the activity in a video. We consolidate hierarchical structures of the same activity from different videos into a unified stochastic grammar describing the overall activity. We then describe an inference mechanism to interpret new instances of activities. We use three datasets, which have been annotated by multiple annotators, of daily activity videos to demonstrate the effectiveness of our system.
0 Replies

Loading