Automated accelerator optimization aided by graph neural networksDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 03 May 2023DAC 2022Readers: Everyone
Abstract: Using High-Level Synthesis (HLS), the hardware designers must describe only a high-level behavioral flow of the design. However, it still can take weeks to develop a high-performance architecture mainly because there are many design choices at a higher level to explore. Besides, it takes several minutes to hours to evaluate the design with the HLS tool. To solve this problem, we model the HLS tool with a graph neural network that is trained to be used for a wide range of applications. The experimental results demonstrate that our model can estimate the quality of design in milliseconds with high accuracy, resulting in up to 79X speedup (with an average of 48X) for optimizing the design compared to the previous state-of-the-art work relying on the HLS tool.
0 Replies

Loading