Explain Any Concept: Segment Anything Meets Concept-Based Explanation

Published: 21 Sept 2023, Last Modified: 02 Nov 2023NeurIPS 2023 posterEveryoneRevisionsBibTeX
Keywords: EXplainable AI, Machine Learning, Computer Vision
Abstract: EXplainable AI (XAI) is an essential topic to improve human understanding of deep neural networks (DNNs) given their black-box internals. For computer vision tasks, mainstream pixel-based XAI methods explain DNN decisions by identifying important pixels, and emerging concept-based XAI explore forming explanations with concepts (e.g., a head in an image). However, pixels are generally hard to interpret and sensitive to the imprecision of XAI methods, whereas “concepts” in prior works require human annotation or are limited to pre-defined concept sets. On the other hand, driven by large-scale pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promotable framework for performing precise and comprehensive instance segmentation, enabling automatic preparation of concept sets from a given image. This paper for the first time explores using SAM to augment concept-based XAI. We offer an effective and flexible concept-based explanation method, namely Explain Any Concept (EAC), which explains DNN decisions with any concept. While SAM is highly effective and offers an “out-of-the-box” instance segmentation, it is costly when being integrated into defacto XAI pipelines. We thus propose a lightweight per-input equivalent (PIE) scheme, enabling efficient explanation with a surrogate model. Our evaluation over two popular datasets (ImageNet and COCO) illustrate the highly encouraging performance of EAC over commonly-used XAI methods.
Supplementary Material: pdf
Submission Number: 9926
Loading