TempFuser: Learning Tactical and Agile Flight Maneuvers in Aerial Dogfights using a Long Short-Term Temporal Fusion TransformerDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 05 Nov 2023CoRR 2023Readers: Everyone
Abstract: In aerial combat, dogfighting poses intricate challenges that demand an understanding of both strategic maneuvers and the aerodynamics of agile fighter aircraft. In this paper, we introduce TempFuser, a novel long short-term temporal fusion transformer designed to learn tactical and agile flight maneuvers in aerial dogfights. Our approach employs two distinct LSTM-based input embeddings to encode long-term sparse and short-term dense state representations. By integrating these embeddings through a transformer encoder, our model captures the tactics and agility of fighter jets, enabling it to generate end-to-end flight commands that secure dominant positions and outmaneuver the opponent. After extensive training against various types of opponent aircraft in a high-fidelity flight simulator, our model successfully learns to perform complex fighter maneuvers, consistently outperforming several baseline models. Notably, our model exhibits human-like strategic maneuvers even when facing adversaries with superior specifications, all without relying on explicit prior knowledge. Moreover, it demonstrates robust pursuit performance in challenging supersonic and low-altitude environments. Demo videos are available at https://sites.google.com/view/tempfuser.
0 Replies

Loading