Brain Cognition-Inspired Dual-Pathway CNN Architecture for Image Classification

Published: 01 Jan 2024, Last Modified: 12 Aug 2025IEEE Trans. Neural Networks Learn. Syst. 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Inspired by the global–local information processing mechanism in the human visual system, we propose a novel convolutional neural network (CNN) architecture named cognition-inspired network (CogNet) that consists of a global pathway, a local pathway, and a top-down modulator. We first use a common CNN block to form the local pathway that aims to extract fine local features of the input image. Then, we use a transformer encoder to form the global pathway to capture global structural and contextual information among local parts in the input image. Finally, we construct the learnable top-down modulator where fine local features of the local pathway are modulated by global representations of the global pathway. For ease of use, we encapsulate the dual-pathway computation and modulation process into a building block, called the global–local block (GL block), and a CogNet of any depth can be constructed by stacking a necessary number of GL blocks one after another. Extensive experimental evaluations have revealed that the proposed CogNets have achieved the state-of-the-art performance accuracies on all the six benchmark datasets and are very effective for overcoming the “texture bias” and the “semantic confusion” problems faced by many CNN models.
Loading