Enabling spatio-temporal aggregation in Birds-Eye-View Vehicle EstimationDownload PDFOpen Website

2021 (modified: 17 Nov 2022)ICRA 2021Readers: Everyone
Abstract: Constructing Birds-Eye-View (BEV) maps from monocular images is typically a complex multi-stage process involving the separate vision tasks of ground plane estimation, road segmentation and 3D object detection. However, recent approaches have adopted end-to-end solutions which warp image-based features from the image-plane to BEV while implicitly taking account of camera geometry. In this work, we show how such instantaneous BEV estimation of a scene can be learnt, and a better state estimation of the world can be achieved by incorporating temporal information. Our model learns a representation from monocular video through factorised 3D convolutions and uses this to estimate a BEV occupancy grid of the final frame. We achieve state-of-the-art results for BEV estimation from monocular images, and establish a new benchmark for single-scene BEV estimation from monocular video.
0 Replies

Loading