RPF3D: Range-Pillar Feature Deep Fusion 3D Detector for Autonomous Driving

Published: 01 Jan 2023, Last Modified: 13 Nov 2024ICONIP (3) 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: In this paper, we present RPF3D, an innovative single-stage framework that explores the complementary nature of point clouds and range images for 3D object detection. Our method addresses the sampling region imbalance issue inherent in fixed-dilation-rate convolutional layers, allowing for a more accurate representation of the input data. To enhance the model’s adaptability, we introduce several attention layers that accommodate a wide range of dilation rates necessary for processing range image scenes. To tackle the challenges of feature fusion and alignment, we propose the AttentiveFusion module and the Range Image Guided Deep Fusion (RIGDF) backbone architecture in the Range-Pillar Feature Fusion section, which effectively addresses the one-pillar-to-multiple-pixels feature alignment problem caused by the point cloud encoding strategy. These innovative components work together to provide a more robust and accurate fusion of features for improved 3D object detection. We validate the effectiveness of our RPF3D framework through extensive experiments on the KITTI and Waymo Open Datasets. The results demonstrate the superior performance of our approach compared to existing methods, particularly in the Car class detection where a significant enhancement is achieved on both datasets. This showcases the practical applicability and potential impact of our proposed framework in real-world scenarios and emphasizes its relevance in the domain of 3D object detection.
Loading