Can Single-Pass Contrastive Learning Work for Both Homophilic and Heterophilic Graph?Download PDF

Published: 01 Feb 2023, Last Modified: 14 Oct 2024Submitted to ICLR 2023Readers: Everyone
Keywords: Graph Contrastive Learning
Abstract: Existing graph contrastive learning (GCL) typically requires two forward pass for a single instance to construct the contrastive loss. Despite its remarkable success, it is unclear whether such a dual-pass design is (theoretically) necessary. Besides, the empirical results are hitherto limited to the homophilic graph benchmarks. Then a natural question arises: Can we design a method that works for both homophilic and heterophilic graphs with a performance guarantee? To answer this, we theoretically analyze the concentration property of features obtained by neighborhood aggregation on both homophilic and heterophilic graphs, introduce the single-pass graph contrastive learning loss based on the property, and provide performance guarantees of the minimizer of the loss on downstream tasks. As a direct consequence of our theory, we introduce the Single-Pass Graph Contrastive Learning method (SP-GCL). Empirically, on 14 benchmark datasets with varying degrees of heterophily, the features learned by the SP-GCL can match or outperform existing strong baselines with significantly less computational overhead, and empirical results show the feasibility of conclusions derived by our analysis in real-world cases.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/can-single-pass-contrastive-learning-work-for/code)
16 Replies

Loading