Growing Brains in Recurrent Neural Networks for Multiple Cognitive Tasks

Published: 29 Nov 2023, Last Modified: 29 Nov 2023NeurReps 2023 PosterEveryoneRevisionsBibTeX
Submission Track: Extended Abstract
Keywords: Cognitive Neuroscience, Recurrent Neural Networks, Interpretability, Brain-Inspired Machine Learning
TL;DR: Brain-like structures emerge when recurrent neural networks are trained to perform cognitive tasks under spatial constraints, via a recent machine learning method BIMT.
Abstract: Recurrent neural networks (RNNs) trained on a diverse ensemble of cognitive tasks, as described by Yang et al (2019); Khona et al. (2023), have been shown to exhibit functional modularity, where neurons organize into discrete functional clusters, each specialized for specific shared computational subtasks. However, these RNNs do not demonstrate anatomical modularity, where these functionally specialized clusters also have a distinct spatial organization. This contrasts with the human brain which has both functional and anatomical modularity. Is there a way to train RNNs to make them more like brains in this regard? We apply a recent machine learning method, brain-inspired modular training (BIMT), to encourage neural connectivity to be local in space. Consequently, hidden neuron organization of the RNN forms spatial structures reminiscent of those of the brain: spatial clusters which correspond to functional clusters. Compared to standard $L_1$ regularization and absence of regularization, BIMT exhibits superior performance by optimally balancing between task performance and sparsity. This balance is quantified both in terms of the number of active neurons and the cumulative wiring length. In addition to achieving brain-like organization in RNNs, our findings also suggest that BIMT holds promise for applications in neuromorphic computing and enhancing the interpretability of neural network architectures.
Submission Number: 45