Generating with Confidence: Uncertainty Quantification for Black-box Large Language Models

24 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Uncertainty Quantification, Selective Generation, Natural Language Generation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Simple and effective baselines methods to quantify the uncertainty and confidence of LLM generations via only black-box access.
Abstract: Large language models (LLMs) specializing in natural language generation (NLG) have recently started exhibiting promising capabilities across a variety of domains. However, gauging the trustworthiness of responses generated by LLMs remains an open challenge, with limited research on uncertainty quantification (UQ) for NLG. Furthermore, existing literature typically assumes white-box access to language models, which is becoming unrealistic either due to the closed-source nature of the latest LLMs or computational constraints. In this work, we investigate UQ in NLG for *black-box* LLMs. We first differentiate *uncertainty* vs *confidence*: the former refers to the “dispersion” of the potential predictions for a fixed input, and the latter refers to the confidence on a particular prediction/generation. We then propose and compare several confidence/uncertainty metrics, applying them to *selective* NLG where unreliable results could either be ignored or yielded for further assessment. Experiments were carried out with several popular LLMs on question-answering datasets (for evaluation purposes). Results reveal that a simple metric for the semantic dispersion can be a reliable predictor of the quality of LLM responses, providing valuable insights for practitioners on uncertainty management when adopting LLMs.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8527
Loading