Singular Value Few-shot Adaptation of Vision-Language Models

TMLR Paper6161 Authors

09 Oct 2025 (modified: 14 Oct 2025)Under review for TMLREveryoneRevisionsBibTeXCC BY 4.0
Abstract: Vision-language models (VLMs) like CLIP have shown impressive zero-shot and few-shot learning capabilities across diverse applications. However, adapting these models to new fine-grained domains remains difficult due to reliance on prompt engineering and the high cost of full model fine-tuning. Existing adaptation approaches rely on augmented components, such as prompt tokens and adapter modules, which could limit adaptation quality, destabilize the model, and compromise the rich knowledge learned during pretraining. In this work, we present CLIP-SVD, a novel multi-modal and parameter-efficient adaptation technique that leverages Singular Value Decomposition (SVD) to modify the internal parameter space of CLIP without injecting additional modules. Specifically, we fine-tune only the singular values of the CLIP parameter matrices to rescale the basis vectors for domain adaptation while retaining the pretrained model. This design enables enhanced adaptation performance using only 0.04% of the model's total parameters and better preservation of its generalization ability. CLIP-SVD achieves state-of-the-art classification results on 11 natural and 10 biomedical datasets, outperforming previous methods in both accuracy and generalization under few-shot settings. Additionally, we leverage a natural language-based approach to analyze the effectiveness and dynamics of the CLIP adaptation to allow interpretability of CLIP-SVD.
Submission Type: Regular submission (no more than 12 pages of main content)
Previous TMLR Submission Url: https://openreview.net/forum?id=s8qX2xuBKc&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DTMLR%2FAuthors%23your-submissions)
Changes Since Last Submission: We corrected minor formatting inconsistencies, including adjustments to the font style and size to fully comply with the TMLR formatting guidelines.
Assigned Action Editor: ~Hanwang_Zhang3
Submission Number: 6161
Loading