Identification of Mean-Field Dynamics using Transformers

26 Sept 2024 (modified: 12 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Mean field dynamics, Transformers, Universal approximation
TL;DR: We shows transformers can approximate solutions to mean-field equations
Abstract: This paper investigates the use of transformer architectures to approximate the mean-field dynamics of interacting particle systems exhibiting collective behavior. Such systems are fundamental in modeling phenomena across physics, biology, and engineering, including gas dynamics, opinion formation, biological networks, and swarm robotics. The key characteristic of these systems is that the particles are indistinguishable, leading to permutation-equivariant dynamics. We demonstrate that transformers, which inherently possess permutation equivariance, are well-suited for approximating these dynamics. Specifically, we prove that if a finite-dimensional transformer can effectively approximate the finite-dimensional vector field governing the particle system, then the expected output of this transformer provides a good approximation for the infinite-dimensional mean-field vector field. Leveraging this result, we establish theoretical bounds on the distance between the true mean-field dynamics and those obtained using the transformer. We validate our theoretical findings through numerical simulations on the Cucker-Smale model for flocking, and the mean-field system for training two-layer neural networks.
Supplementary Material: zip
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7820
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview