See It from My Perspective: How Language Affects Cultural Bias in Image Understanding

Published: 22 Jan 2025, Last Modified: 28 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: vision-language models, multilinguality, cultural bias, vqa, emotion classification, art
Abstract: Vision-language models (VLMs) can respond to queries about images in many languages. However, beyond language, culture affects how we see things. For example, individuals from Western cultures focus more on the central figure in an image while individuals from East Asian cultures attend more to scene context (Nisbett 2001). In this work, we characterize the Western bias of VLMs in image understanding and investigate the role that language plays in this disparity. We evaluate VLMs across subjective and objective visual tasks with culturally diverse images and annotations. We find that VLMs perform better on the Western split than on the East Asian split of each task. Through controlled experimentation, we trace one source of this bias in image understanding to the lack of diversity in language model construction. While inference in a language nearer to a culture can lead to reductions in bias, we show it is much more effective when that language was well-represented during text-only pre-training. Interestingly, this yields bias reductions even when prompting in English. Our work highlights the importance of richer representation of all languages in building equitable VLMs.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12153
Loading