Keywords: Jailbreaking Attacks, Large Language Models
Abstract: Large language models (LLMs) have achieved remarkable success across diverse applications but remain vulnerable to jailbreak attacks, where attackers craft prompts that bypass safety alignment and elicit unsafe responses. Among existing approaches, optimization-based attacks have shown strong effectiveness, yet current methods often suffer from frequent refusals, pseudo-harmful outputs, and inefficient token-level updates. In this work, we propose TAO-Attack, a new optimization-based jailbreak method. TAO-Attack employs a two-stage loss function: the first stage suppresses refusals to ensure the model continues harmful prefixes, while the second stage penalizes pseudo-harmful outputs and encourages the model toward more harmful completions. In addition, we design a direction-priority token optimization (DPTO) strategy that improves efficiency by aligning candidates with the gradient direction before considering update magnitude. Extensive experiments on multiple LLMs demonstrate that TAO-Attack consistently outperforms state-of-the-art methods, achieving higher attack success rates and even reaching 100\% in certain scenarios.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Submission Number: 11444
Loading