Activation Contrast Decoding: Mitigating Hallucination in Large Vision-Language Models through Bidirectional Hidden State Intervention
Abstract: Large Vision-Language Models (LVLMs) have demonstrated impressive capabilities in multimodal understanding, but they frequently suffer from hallucination - generating content inconsistent with visual inputs. In this work, we explore a novel perspective on hallucination mitigation by examining the intermediate activations of LVLMs during generation. Our investigation reveals that hallucinated content manifests as distinct, identifiable patterns in the model's hidden state space. Motivated by this finding, we propose \methodname{full}, a training-free approach that mitigates hallucination through targeted intervention in the model's intermediate activations. ASD operates by first identifying directional patterns of hallucination in the activation space using a small calibration set, then employing a contrast decoding mechanism that computes the difference between positive and negative steering predictions. This approach effectively suppresses hallucination patterns while preserving the model's general capabilities. Extensive experiments demonstrate that our method significantly reduces hallucination across multiple benchmarks while maintaining performance on general visual understanding tasks. Notably, our approach requires no model re-training or architectural modifications, making it readily applicable to existing deployed models.
Paper Type: Long
Research Area: Multimodality and Language Grounding to Vision, Robotics and Beyond
Research Area Keywords: vision question answering, multimodality, multimodal applications
Languages Studied: English
Submission Number: 49
Loading