Looped ReLU MLPs May Be All You Need as Practical Programmable Computers
Abstract: Previous work has demonstrated that attention mechanisms are Turing complete. More recently, it has been shown that a looped 9-layer Transformer can function as a universal programmable computer. In contrast, the multi-layer perceptrons with $\mathsf{ReLU}$ activation ($\mathsf{ReLU}$-$\mathsf{MLP}$), one of the most fundamental components of neural networks, is known to be expressive; specifically, a two-layer neural network is a universal approximator given an exponentially large number of hidden neurons. However, it remains unclear whether a $\mathsf{ReLU}$-$\mathsf{MLP}$ can be made into a universal programmable computer using a practical number of weights. In this work, we provide an affirmative answer that a looped 23-layer $\mathsf{ReLU}$-$\mathsf{MLP}$ is capable of performing the basic necessary operations, more efficiently and effectively functioning as a programmable computer than a looped Transformer. This indicates simple modules have stronger expressive power than previously expected and have not been fully explored. Our work provides insights into the mechanisms of neural networks and demonstrates that complex tasks, such as functioning as a programmable computer, do not necessarily require advanced architectures like Transformers.
Submission Number: 893
Loading