On Provable Benefits of Policy Learning from Human Preferences in Contextual Bandit Problems

20 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: bandit theory, policy learning with human preference
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We provide a theoretical comparison between the preference-based approach and the approach based on human ratings for policy learning. We seek to explain the advantage of the former from a modeling perspective.
Abstract: For a real-world decision-making problem, the reward function often needs to be engineered or learned. A popular approach is to utilize human feedback to learn a reward function for training. The most straightforward way to do so is to ask humans to provide ratings for state-action pairs on an absolute scale and take these ratings as reward samples directly. Another popular way is to ask humans to rank a small set of state-action pairs by preference and learn a reward function from these preference data. Recently, preference-based methods have demonstrated substantial success in empirical applications such as InstructGPT. In this work, we develop a theoretical comparison between these human feedback approaches in offline contextual bandits and show how human bias and uncertainty in feedback modelings can affect the theoretical guarantees of these approaches. Through this, our results seek to provide a theoretical explanation for the empirical successes of preference-based methods from a modeling perspective.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2133
Loading