Abstract: Logical reasoning is a crucial factor in machine reading comprehension tasks (MRC). Existing methods suffer from the balance between semantic and explicit logical relation representations, in which some emphasize contextual semantics, while others pay more attention to explicit logical features. Additionally, previous methods utilize graph convolutional networks (GCN) for node updates, still exhibiting some shortcomings. To address these challenges, in this paper, we propose a logical reasoning method with contrastive learning and lightweight graph networks (LogiGraph). Our method focuses on the lightweight aspect of the GCN, which greatly improves the shortcomings of the GCN, and employs conjunction and punctuation marks as two types of edges to construct a dual graph. Besides, we combine contrastive learning with graph reasoning, which changes the logical expression’s content as the negative sample of the original context, enabling the model to capture negative logical relationships and improving generalization ability. We conduct extensive experiments on two public datasets, ReClor and LogiQA. Experimental results demonstrate that LogiGraph can achieve state-of-the-art performance on both datasets.
Loading