Generative Neural Networks for Anomaly Detection in Crowded ScenesDownload PDFOpen Website

2019 (modified: 12 Nov 2022)IEEE Trans. Inf. Forensics Secur. 2019Readers: Everyone
Abstract: Security surveillance is critical to social harmony and people's peaceful life. It has a great impact on strengthening social stability and life safeguarding. Detecting anomaly timely, effectively and efficiently in video surveillance remains challenging. This paper proposes a new approach, called S <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> -VAE, for anomaly detection from video data. The S <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> -VAE consists of two proposed neural networks: a Stacked Fully Connected Variational AutoEncoder (S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">F</sub> -VAE) and a Skip Convolutional VAE (S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</sub> -VAE). The S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">F</sub> -VAE is a shallow generative network to obtain a model like Gaussian mixture to fit the distribution of the actual data. The S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</sub> -VAE, as a key component of S <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> -VAE, is a deep generative network to take advantages of CNN, VAE and skip connections. Both S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">F</sub> -VAE and S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</sub> -VAE are efficient and effective generative networks and they can achieve better performance for detecting both local abnormal events and global abnormal events. The proposed S <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> -VAE is evaluated using four public datasets. The experimental results show that the S <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> -VAE outperforms the state-of-the-art algorithms. The code is available publicly at https://github.com/tianwangbuaa/.
0 Replies

Loading