The robustness of Random Forest and Support Vector Machine Algorithms to a Faulty Heart Sound Segmentation

Abstract: Cardiac auscultation is the key exam to screen cardiac diseases both in developed and developing countries. A heart sound auscultation procedure can detect the presence of murmurs and point to a diagnosis, thus it is an important first-line assessment and also cost-effective tool. The design automatic recommendation systems based on heart sound auscultation can play an important role in boosting the accuracy and the pervasiveness of screening tools. One such as step, consists in detecting the fundamental heart sound states, a process known as segmentation. A faulty segmentation or a wrong estimation of the heart rate might result in an incapability of heart sound classifiers to detect abnormal waves, such as murmurs. In the process of understanding the impact of a faulty segmentation, several common heart sound segmentation errors are studied in detail, namely those where the heart rate is badly estimated and those where S1/S2 and Systolic/Diastolic states are swapped in comparison with the ground truth state sequence. From the tested algorithms, support vector machine (SVMs) and random forest (RFs) shown to be more sensitive to a wrong estimation of the heart rate (an expected drop of 6% and 8% on the overall performance, respectively) than to a swap in the state sequence of events (an expected drop of 1.9% and 4.6%, respectively).
0 Replies
Loading