Sensor-Assisted Rate Adaptation for UAV MU-MIMO NetworksDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 15 May 2023IEEE/ACM Trans. Netw. 2022Readers: Everyone
Abstract: Propelled by multi-user MIMO (MU-MIMO) technology, unmanned aerial vehicles (UAVs) as mobile hotspots have recently emerged as an attractive wireless communication paradigm. Rate adaptation (RA) becomes indispensable to enhance UAV communication robustness against UAV mobility-induced channel variances. However, existing MU-MIMO RA algorithms are mainly designed for ground communications with relatively stable channel coherence time, which incurs channel measurement staleness and sub-optimal rate selections when coping with highly dynamic air-to-ground links. In this paper, we propose SensRate, a new uplink MU-MIMO RA algorithm dedicated for low-altitude UAVs, which exploits inherent on-board sensors used for flight control with no extra cost. We propose a novel channel prediction algorithm that utilizes sensor-estimated flight states to assist channel direction prediction for each client and estimate inter-user interference for optimal rates. We provide an implementation of our design using a commercial UAV and show that it achieves an average throughput gain of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1.24\times $ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1.28\times $ </tex-math></inline-formula> compared with the bestknown RA algorithm for 2- and 3-antenna APs, respectively.
0 Replies

Loading