Abstract: We propose a novel semi-supervised learning method for convolutional neural networks (CNNs). CNN is one of the most popular models for deep learning and its successes among various types of applications include image and speech recognition, image captioning, and the game of ‘go’. However, the requirement for a vast amount of labeled data for supervised learning in CNNs is a serious problem. Unsupervised learning, which uses the information of unlabeled data, might be key to addressing the problem, although it has not been investigated sufficiently in CNN regimes. The proposed method involves both supervised and unsupervised learning in identical feedforward networks, and enables seamless switching among them. We validated the method using an image recognition task. The results showed that learning using non-labeled data dramatically improves the efficiency of supervised learning.
Loading