Keywords: inverse planning, large language models, theory of mind, social reasoning
TL;DR: We combine LLMs that generate hypotheses and likelihood functions with a Bayesian inverse planning model, improving reasoning on theory of mind tasks.
Abstract: We propose a hybrid approach to machine Theory of Mind (ToM) that uses large language models (LLMs) as a mechanism for generating hypotheses and likelihood functions with a Bayesian inverse planning model that computes posterior probabilities for an agent’s likely mental states given its actions. Bayesian inverse planning models can accurately predict human reasoning on a variety of ToM tasks, but these models are constrained in their ability to scale these predictions to scenarios with a large number of possible hypotheses and actions. Conversely, LLM-based approaches have recently demonstrated promise in solving ToM benchmarks, but can exhibit brittleness and failures on reasoning tasks even when they pass otherwise structurally identical versions. By combining these two methods, our approach leverages the strengths of each component, closely matching optimal results on a task inspired by prior inverse planning models and improving performance relative to models that utilize LLMs alone or with chain-of-thought prompting. We also exhibit the model’s potential to predict mental states on open-ended tasks, offering a promising direction for future development of ToM models and the creation of socially intelligent generative agent models.
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12560
Loading