Abstract: We describe an automatic classifier of arrythmias based on 12-lead and reduced-lead electrocardiograms. Our classifier composes the scattering transform (ST) and a long short-term memory (LSTM) network. It is trained on PhysioNet/Computing in Cardiology Challenge 2021 data. The ST captures short-term temporal ECG modulations while reducing its sampling rate to a few samples per typical heart beat. We pass the output of the ST to a depthwise-separable convolution layer which combines lead responses separately for each ST coefficient and then combines resulting values across ST coefficients. At a deeper level, 2 LSTM layers integrate local variations of the input over long time scales. We train in an end-to-end fashion as a multilabel classification problem with a normal and 25 arrhythmia classes. We used canonical correlation analysis (CCA) for transfer learning from 12-lead ST representations to reduced-lead ones. For 12-, 6-, 4-, 3- and 2-leads, team “BitScattered” Challenge metrics on the hidden validation set were 0.46, 0.44, 0.45, 0.46 and 0.43; and on the hidden test set were 0.10, 0.11, 0.10, 0.10 and 0.10, respectively, ranking 34 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sup> on the hidden test set.
0 Replies
Loading