Neural Optimizer Equation, Decay Function, and Learning Rate Schedule Joint Evolution

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: general machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: genetic algorithms, deep learning optimizers, neural optimizer search
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: A major contributor to the quality of a deep learning model is the selection of the optimizer. We propose a new dual-joint search space in the realm of neural optimizer search (NOS), along with an integrity check, to automate the process of finding deep learning optimizers. Our dual-joint search space simultaneously allows for the optimization of not only the update equation, but also internal decay functions and learning rate schedules for optimizers. We search the space using our proposed mutation-only, particle-based genetic algorithm able to be massively parallelized for our domain-specific problem. We evaluate our candidate optimizers on the CIFAR-10 dataset using a small ConvNet. To assess generalization, the final optimizers were then transferred to large-scale image classification on CIFAR-100 and TinyImageNet, while also being fine-tuned on Flowers102, Cars196, and Caltech101 using EfficientNetV2Small. We found multiple optimizers, learning rate schedules, and Adam variants that outperformed Adam, as well as other standard deep learning optimizers, across the image classification tasks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6195
Loading