Deep-LK for Efficient Adaptive Object TrackingDownload PDFOpen Website

2018 (modified: 16 May 2022)ICRA 2018Readers: Everyone
Abstract: In this paper, we present a new approach for efficient regression-based object tracking. Our approach is closely related to the Generic Object Tracking Using Regression Networks (GOTURN) framework [1]. We make the following contributions. First, we demonstrate that there is a theoretical relationship between Siamese regression networks like GOTURN and the classical Inverse Compositional Lucas & Kanade (IC-LK) algorithm. Further, we demonstrate that unlike GOTURN, IC-LK adapts its regressor to the appearance of the current tracked frame. We argue that the lack of such property in GOTURN attributes to its poor performance on unseen objects and/or viewpoints. Second, we propose a novel framework for object tracking inspired by the IC-LK framework, which we refer to as Deep-LK. Finally, we show impressive results demonstrating that Deep-LK substantially outperforms GOTURN and demonstrate comparable tracking performance against current state-of-the-art deep trackers on high frame-rate sequences whilst being an order of magnitude (100 FPS) computationally efficient.
0 Replies

Loading