The Concordia NLG Surface Realizer at SRST 2019

Published: 01 Jan 2019, Last Modified: 30 Sept 2025MSR@EMNLP-IJCNLP 2019EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: This paper presents the model we developed for the shallow track of the 2019 NLG Surface Realization Shared Task. The model reconstructs sentences whose word order and word inflections were removed. We divided the problem into two sub-problems: reordering and inflecting. For the purpose of reordering, we used a pointer network integrated with a transformer model as its encoder-decoder modules. In order to generate the inflected forms of tokens, a Feed Forward Neural Network was employed.
Loading