AUC-CL: A Batchsize-Robust Framework for Self-Supervised Contrastive Representation Learning

Published: 16 Jan 2024, Last Modified: 16 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Contrastive Learning, AUC maximization, Representation Learning, Self Supervised Learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a batch-size robust contrastive loss, prove convergence guarantees and obtain state of the art performance against several established methods with low batch sizes.
Abstract: Self-supervised learning through contrastive representations is an emergent and promising avenue, aiming at alleviating the availability of labeled data. Recent research in the field also demonstrates its viability for several downstream tasks, henceforth leading to works that implement the contrastive principle through innovative loss functions and methods. However, despite achieving impressive progress, most methods depend on prohibitively large batch sizes and compute requirements for good performance. In this work, we propose the $\textbf{AUC}$-$\textbf{C}$ontrastive $\textbf{L}$earning, a new approach to contrastive learning that demonstrates robust and competitive performance in compute-limited regimes. We propose to incorporate the contrastive objective within the AUC-maximization framework, by noting that the AUC metric is maximized upon enhancing the probability of the network's binary prediction difference between positive and negative samples which inspires adequate embedding space arrangements in representation learning. Unlike standard contrastive methods, when performing stochastic optimization, our method maintains unbiased stochastic gradients and thus is more robust to batchsizes as opposed to standard stochastic optimization problems. Remarkably, our method with a batch size of 256, outperforms several state-of-the-art methods that may need much larger batch sizes (e.g., 4096), on ImageNet and other standard datasets. Experiments on transfer learning, few-shot learning, and other downstream tasks also demonstrate the viability of our method.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Submission Number: 4089
Loading