Robot exploration of indoor environments using incomplete and inaccurate prior knowledgeOpen Website

2020 (modified: 09 Jan 2022)Robotics Auton. Syst. 2020Readers: Everyone
Abstract: Highlights • Method for robot exploration of indoor environments that exploits prior knowledge. • Floor plans, bounding boxes, and hand-drawn maps are examples of prior knowledge. • Experiments show improvements also with incomplete and inaccurate prior knowledge. Abstract Exploration is a task in which autonomous mobile robots incrementally discover features of interest in initially unknown environments. We consider the problem of exploration for map building, in which a robot explores an indoor environment in order to build a metric map. Most of the current exploration strategies used to select the next best locations to visit ignore prior knowledge about the environments to explore that, in some practical cases, could be available. In this paper, we present an exploration strategy that evaluates the amount of new areas that can be perceived from a location according to a priori knowledge about the structure of the indoor environment being explored, like the floor plan or the contour of external walls. Although this knowledge can be incomplete and inaccurate (e.g., a floor plan typically does not represent furniture and objects and consequently may not fully mirror the structure of the real environment), we experimentally show, both in simulation and with real robots, that employing prior knowledge improves the exploration performance in a wide range of settings.
0 Replies

Loading