Keywords: Hallucination, Automatic Speech Recognition, SpeechLLM, Speech Foundation Model, Benchmark
TL;DR: This paper introduces a framework that categorizes ASR hallucinations into 4 categories, namely lexical, phonetic, morphological, and semantic hallucinations, to provide more detailed error analysis beyond standard WER.
Abstract: Hallucinations in automatic speech recognition (ASR) systems refer to fluent and coherent transcriptions produced by neural ASR models that are completely unrelated to the underlying acoustic input (i.e., the speech signal). While similar to conventional decoding errors in potentially compromising the usability of transcriptions for downstream applications, hallucinations can be more detrimental due to their preservation of syntactically and semantically plausible structure. This apparent coherence can mislead subsequent processing stages and introduce serious risks, particularly in critical domains such as healthcare and law. Conventional evaluation metrics are primarily centered on error-based metrics and fail to distinguish between phonetic inaccuracies and hallucinations. Consequently, there is a critical need for new evaluation frameworks that can effectively identify and assess models with a heightened propensity for generating hallucinated content. To this end, we introduce SHALLOW, the first benchmark framework that systematically categorizes and quantifies hallucination phenomena in ASR along four complementary axes: lexical, phonetic, morphological, and semantic. We define targeted metrics within each category to produce interpretable profiles of model behavior. Through evaluation across various architectures and speech domains, we have found that SHALLOW metrics correlate strongly with word error rate (WER) when recognition quality is high (i.e., low WER).
Still, this correlation weakens substantially as WER increases. SHALLOW, therefore, captures fine-grained error patterns that WER fails to distinguish under degraded and challenging conditions. Our framework supports specific diagnosis of model weaknesses and provides feedback for model improvement beyond what aggregate error rates can offer.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 25034
Loading